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1 Properties of a Random Sample

1.1 Independence

Theorem 1.1. Suppose X1, X2, . . . , Xn
i.i.d.∼ N (µ, σ2)

Define random variables X̄ and S2 as the following:

X̄ :=
1

n

n∑
i=1

Xi, S2 :=
1

n− 1

n∑
i=1

(Xi − X̄)2

Then X̄ ∼ N (µ, σ2

n )

Proof. ∀t > 0, the characteristic function of X̄ is:

ϕX̄(t) = ϕ∑n
i=1 Xi

(
t

n

)
=

n∏
i=1

ϕXi

(
t

n

)
=

(
ϕXi

(
t

n

))n

= exp{i t
n
µn−

σ2( t
n )

2

2
n}

= exp{itµ−
σ2

n t2

2
}

which is the characteristic function of N (µ, σ2

n )

To facilitate with the following proofs, we introduce the following theorems (Theorem 4.6.11 and Theorem 4.6.12)
in Statistical Inference (2001) by Casella & Berger [1], which are the generalizations of two lemmas and are not
proved in the textbook.

Theorem 1.2. LetX1, . . . , Xn be random vectors. Then they are mutually independent random vectors if and only
if there exist functions gi(xi), i = 1, . . . , n such that the joint pdf or pmf of (X1, . . . , Xn) can be written as

f(x1, . . . , xn) = g1(x1) · · · · · gn(xn)
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Proof. i. (=⇒) By the definition of independence,

f(x1, . . . , xn) = f1(x1) · · · · · fn(xn)

where fi(xi) is the marginal probability density functions ofXi. So we have found these functions.

ii. (⇐=) Denote di as the dimension of each random vector and let d :=
∑n

i=1 di. Define

Ci :=

∫
Rdi

gi(xi)dxi

Since f(x1, . . . , xn) is the joint pdf, then

1 =

∫
Rd

f(x1, . . . , xn)dx1 . . . dxn definition of pdf

=

∫
R

∑d
i=1

di

g1(x1) · · · · · gn(xn)dx1 . . . dxn by assumption

=

n∏
i=1

∫
Rdi

gi(xi)dxi by Fubini’s Theorem in Euclidean space

=

n∏
i=1

Ci

Furthermore, the marginal distribution of Xi, i = 1, . . . , n can be given by

fi(xi) := gi(xi)

n∏
j=1
j ̸=i

Cj (1.1)

which could be easily verified. Note that

n∏
i=1

n∏
j=1
j ̸=i

Cj =

n∏
i=1

n∏
j=1

Cj

/
n∏

i=1

n∏
j=1
j=i

Cj =

n∏
i=1

1

/
n∏

i=1

Ci = 1 (1.2)

And using this,

f(x1, . . . , xn) =

n∏
i=1

gi(xi) by assumption

=

(
n∏

i=1

gi(xi)

) n∏
i=1

n∏
j=1
j ̸=i

Cj

 by Equation 1.2

=

n∏
i=1

gi

n∏
j=1
j ̸=i

Cj


=

n∏
i=1

fi(xi) by Equation 1.1

Since fi(xi) is the marginal distribution of Xi, i = 1, . . . , n, (X1, . . . , Xn) are independent random vectors
by definition of independence.

Theorem 1.3. Let X1, . . . , Xn be independent random vectors. Let gi(xi) be a function only of xi whose range
is a subset of R, i = 1, . . . , n. Then the random variables Ui := gi(Xi), i = 1, . . . , n, are mutually independent.
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Proof. Denote di as the dimension of each random vector and let d :=
∑n

i=1 di.
∀ui ∈ R, i = 1, . . . , n, define

A(i)
ui

:= {x ∈ Rdi : gi(x) ≤ ui}

The joint cumulative distribution function (cdf) of g1(X1), . . . , gn(Xn) is:

F (u1, . . . , un) = P{g1(X1) ≤ u1, . . . , gn(Xn) ≤ un}

= P{X1 ∈ A(1)
u1

, . . . , Xn ∈ A(n)
un

}

=

n∏
i=1

P{Xi ∈ A(i)
ui
} by independence of Xi’s

Denote Xij as the j-th entry of the i-th random vector Xi, where 1 ≤ i ≤ n, 1 ≤ j ≤ di.
The joint pdf of g1(X1), . . . , gn(Xn) is:

f(u1, . . . , un) =
∂d∏n

i=1

∏di

j=1 ∂xij

F (u1, . . . , un)

=
∂
∑n

i=1 di∏n
i=1

∏di

j=1 ∂xij

n∏
k=1

P{Xk ∈ A(k)
uk

}

=
n∏

i=1

∂di∏di

j=1 ∂xij

P{Xi ∈ A(i)
ui
}

=

n∏
i=1

 di∏
j=1

∂

∂xij

P{gi(Xi) ≤ ui}

Hence, the joint pdf is the product of a series of n functions where the i-th function is of gi(Xi) only, for each i.
By Theorem 1.2, we conclude that g1(X1), . . . , gn(Xn) are independent.

Theorem 1.4. Let X̄ and S2 defined as in Theorem 1.1. Then X̄ and S2 are independent.

Proof.

S2 =
1

n− 1

n∑
i=1

(Xi − X̄)2

=
1

n− 1

[
n∑

i=2

(Xi − X̄)2 + (X1 − X̄)2

]

=
1

n− 1

 n∑
i=2

(Xi − X̄)2 +

(
n∑

i=2

(Xi − X̄)

)2


because
∑n

i=1(Xi − X̄) = 0.
The joint probability density function ofX1, X2, . . . , Xn is:

f(x1, x2, . . . , xn) =

n∏
i=1

1√
2πσ

exp{− (xi − µ)2

2σ2
} by independence

=
1

(2π)n/2σn
exp{− 1

2σ2

n∑
i=1

(xi − µ)2}

We would like to perform a change of variables on the probability density function with the following:

Y1 = X̄, Y2 = X2 − X̄, Y3 = X3 − X̄, . . . , Yn = Xn − X̄

The realized values of Yi’s and Xi’s relate as follows:

y1 = x̄, y2 = x2 − x̄, y3 = x3 − x̄, . . . , yn = xn − x̄
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Solving these n equations, we obtain:

x1 = y1 −
n∑

i=1

yn, x2 = y2 + y1, x3 = y3 + y1, . . . , xn = yn + y1

The Jacobian J of the transformation is:

J =



1
n

1
n

1
n · · · 1

n

− 1
n 1− 1

n − 1
n · · · − 1

n

− 1
n − 1

n 1− 1
n · · · − 1

n
...

...
...

. . .
...

− 1
n − 1

n − 1
n · · · 1− 1

n


The determinant of J is

det J =

∣∣∣∣∣∣∣∣∣∣∣∣∣

1
n

1
n

1
n · · · 1

n

− 1
n 1− 1

n − 1
n · · · − 1

n

− 1
n − 1

n 1− 1
n · · · − 1

n
...

...
...

. . .
...

− 1
n − 1

n − 1
n · · · 1− 1

n

∣∣∣∣∣∣∣∣∣∣∣∣∣

=

∣∣∣∣∣∣∣∣∣∣∣

1
n

1
n · · · 1

n

0 1
...

. . .

0 1

∣∣∣∣∣∣∣∣∣∣∣
=

1

n
expanding over the first column

The second row is obtained by adding the first row of J to all following rows. This is valid because of the property
that the determinant does not change by elementary row operations.
Then the joint probability density function of Y1, Y2, . . . , Yn is:

f(y1, y2, . . . , yn) = (det J−1)
1

(2π)n/2σn
exp{− 1

2σ2

(
(y1 −

n∑
i=2

yi − µ)2 +

n∑
i=2

(yi + y1 − µ)2

)
} (1.3)

Calculating the terms in large parenthesis:

(y1 −
n∑

i=2

yi − µ)2 +

n∑
i=2

(yi + y1 − µ)2

= y21 + (

n∑
i=2

yi)
2 + µ2 − 2y1

n∑
i=2

yi − 2y1µ+ 2µ

n∑
i=2

yi

+

n∑
i=2

y2i + (n− 1)y21 + (n− 1)µ2 + 2y1

n∑
i=2

yi − 2µ

n∑
i=2

yi − 2(n− 1)y1µ

= nµ2 − 2ny1µ+ ny21 +

n∑
i=2

y2i + (

n∑
i=2

yi)
2
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Substituting back to Equation 1.3:

f(y1, y2, . . . , yn) =
1

det J
1

(2π)n/2σn
exp{− 1

2σ2
(nµ2 − 2ny1µ+ ny21)} exp{−

1

2σ2

(
n∑

i=2

y2i + (

n∑
i=2

yi)
2

)
}

=
n

(2π)n/2σn
exp{− n

2σ2
(y1 − µ)2} exp{− 1

2σ2

(
n∑

i=2

y2i + (

n∑
i=2

yi)
2

)
}

=
n

(2π)n/2σn
exp{− n

2σ2
(x̄− µ)2} exp{− 1

2σ2

(
n∑

i=2

(xi − x̄)2 + (

n∑
i=2

(xi − x̄))2

)
} change to xi’s

=
n

(2π)n/2σn
exp{− n

2σ2
(x̄− µ)2} exp{− s2

2σ2
} by definition of s2

:= C · g1(y1)g2(y2, . . . , yn) := g̃1(y1)g2(y2, . . . , yn)

Hence, Y1 = X̄ and Y2, . . . , Yn are independent by Theorem 1.2. As S2 is a function only of Y2, . . . , Yn, by
Theorem 1.3 we conclude that X̄ and S2 are independent.

1.2 The Chi-squared distribution

Definition 1.5 (χ2 distribution). For a χ2 distribution with p degrees of freedom, the probability density function
is

f(x) =
1

Γ(p2 )2
p
2

x
p
2−1e−

x
2 1x>0

This is actually a Gamma distribution with shape p
2 and scale 2.

Lemma 1.6. IfW1 ∼ χ2
p1

andW2 ∼ χ2
p2

that are independent, thenW1 +W2 ∼ χ2
p1+p2

Proof. The characteristic function of Gamma(k, θ) is

(1− itθ)−k, ∀t > 0

Hence, ∀t > 0, by property of χ2 distribution listed in Definition 1.5,

ϕW1(t) = (1− 2ti)−
p1
2 , ϕW2(t) = (1− 2ti)−

p2
2

The characteristic function ofW1 +W2 is then

ϕW1+W2(t) = ϕW1(t)ϕW2(t) = (1− 2ti)−
p1+p2

2

which is the characteristic function of χ2
p1+p2

.

Lemma 1.7. If Z ∼ N (0, 1), then Z2 ∼ χ2
1

Proof. ∀z ≥ 0, the probability distribution function of Z2 is:

FZ2(z) = P(Z2 ≤ z)

= P(−
√
z ≤ Z ≤

√
z)

=

∫ √
z

−
√
z

1√
2π

e−
t2

2 dt

This is differentiable by the Fundamental Theorem of Calculus, so

fZ2(z) =
d

dz
FZ2(z) =

d

dz

∫ √
z

−
√
z

1√
2π

e−
t2

2 dt

=
1

2
√
z

1√
2π

e−
z
2 − −1

2
√
z
e−

z
2

=
1√
2πz

e−
z
2
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The probability density function of χ2
1 is

f(x) =
1

Γ( 12 )2
1
2

x
1
2−1e−

x
2 1x>0 =

1√
2πx

e−
x
2 1x>0

using the fact that Γ( 12 ) =
√
π. Hence, Z2 ∼ χ2

1

Theorem 1.8. Let S2 is the same as defined in Theorem 1.1. Then (n−1)S2

σ2 ∼ χ2
n−1

Proof. For 1 ≤ k ≤ n, define:

X̄k =
1

k

k∑
i=1

Xi, S
2
k =

1

k − 1

k∑
i=1

(Xi − X̄k)
2

Claim: for k ≥ 2,
(k − 1)S2

k

σ2
=

(k − 2)S2
k−1

σ2
+

k − 1

kσ2
(Xk − X̄k−1)

2

The claim is proved as the following direct calculation:

(k − 1)S2
k

σ2
−

(k − 2)S2
k−1

σ2
=

1

σ2

[
k∑

i=1

(Xi − X̄k)
2 −

k−1∑
i=1

(Xi − X̄k−1)
2

]

=
1

σ2

[
k∑

i=1

(X2
i − 2X̄kXi + X̄2

k)−
k−1∑
i=1

(X2
i − 2X̄k−1Xi + X̄2

k−1)

]

=
1

σ2

[
X2

k − kX̄2
k + (k − 1)X̄2

k−1

]
by definition of X̄k and X̄k−1

=
1

σ2

[
X2

k − k(
(k − 1)X̄k−1 +Xk

k
)2 + (k − 1)X̄2

k−1

]
=

1

σ2

[
k − 1

k
Xk − 2(k − 1)

k
XkX̄k−1 +

k − 1

k
X̄2

k−1

]
=

k − 1

kσ2
(Xk − X̄k−1)

2

With this claim, we can prove the theorem by an argument of induction.

i. Base case: when n = 2,

(n− 1)S2

σ2
=

S2
2

σ2
=

1

2σ2
(X2 −X1)

2 by the claim

=

(
X2 −X1√

2σ

)2

By an argument similar to Theorem 1.1 using characteristic functions,
(

X2−X1√
2σ

)2
∼ N (0, 1).

By Lemma 1.7, (n−1)S2

σ2 =
(

X2−X1√
2σ

)2
∼ χ2

1

Hence, base case holds.

ii. Assume that the theorem holds for n = k ≥ 2, i.e.,

(k − 1)S2

σ2
∼ χ2

k−1

iii. Inductive step: when n = k + 1, by the claim above,

kS2
k+1

σ2
=

(k − 1)S2
k

σ2
+

k

(k + 1)σ2
(Xk+1 − X̄k)

2
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By the assumption in step (ii), the first term on the right hand side has a χ2
k−1 distribution. By Lemma 1.6, to

prove that the theorem holds for n = k + 1, we only need to prove that

k

(k + 1)σ2
(Xk+1 − X̄k)

2 ∼ χ2
1

By the setup and the conclusion in Theorem 1.1, we know that Xk+1 ∼ N (µ, σ2) and X̄k ∼ N (µ, σ2

k ).

Consider the random variableXk+1 − X̄k. The expectation is 0 because of the linearity of expectation. Since
this random variable is a linear combination of normal random variables, it is still normally distributed. Its
variance is:

Var(Xk+1 − X̄k) = Var(Xk+1) + (−1)2 Var(X̄k) since Xk+1 and X1, X2, . . . , Xk are independent

= σ2 +
σ2

k
=

(k + 1)σ2

k

Normalizing Xk+1 − X̄k, we obtain
Xk+1 − X̄k√

k+1
k σ

∼ N (0, 1)

Then

k

(k + 1)σ2
(Xk+1 − X̄k)

2 =

Xk+1 − X̄k√
k+1
k σ

2

∼ χ2
1

by Lemma 1.7, as the term inside the parentheses has standard normal distribution.

Therefore, the theorem holds by induction.

1.3 Student’s t distribution and Snedecor’s F distribution

In the following, we introduce the t-distribution and the F -distribution, as well as their respective properties and
connections between the two families of distributions.
Given n observations from the same normal distribution, we can use Theorem 1.8 to build a confidence interval
for the true mean µ of the normal distribution provided its variance σ2. However, usually we lack this information
as well. One solution is to replace the standard deviation σ by the square root of the sample variance S2. And this
leads us to Student’s t-distribution.
Following Theorem 1.1,

X̄ ∼ N (µ,
σ2

n
) ⇐⇒ X̄ − µ

σ/
√
n

=

√
n(X̄ − µ)

σ
∼ N (0, 1)

by standardizing the normal random variable X̄ . Then
√
n(X̄ − µ)

S
=

√
n(X̄ − µ)

σ
· σ
S

=

√
n(X̄ − µ)

σ
· 1√

S2

σ2

By Theorem 1.8, (n−1)S2

σ2 ∼ χ2
n−1. Combining this with Theorem 1.4, we can write

√
n(X̄−µ)

S as:
√
n(X̄ − µ)

S
= Z · 1√

V
n−1

where Z ∼ N (0, 1) and V ∼ χ2
n−1 are independent.
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Definition 1.9 (t-distribution). Let Z ∼ N (0, 1) and V ∼ χ2
p be independent (p ≥ 2 and p ∈ N∗). Then

T :=
Z√
V
p

has a Student’s t-distribution with p degrees of freedom, denoted as T ∼ tp.

To step further, suppose we have two samples we can define Snedecor’s F -distribution:

X1, . . . , Xn
i.i.d.∼ N (µX , σ2

X), X̄ :=
1

n

n∑
i=1

Xi, S
2
X :=

1

n− 1

n−1∑
i=1

(Xi − X̄)2

Y1, . . . , Yn
i.i.d.∼ N (µY , σ

2
Y ), Ȳ :=

1

n

n∑
i=1

Yi, S
2
Y :=

1

n− 1

n−1∑
i=1

(Yi − Ȳ )2

where all Xi’s and Yj’s are independent.

Definition 1.10 (F -distribution). The quotient

F :=
S2
X/σ2

X

S2
Y /σ

2
Y

is defined to admit an F -distribution with n− 1 andm− 1 degrees of freedom, denoted as F ∼ Fn−1,m−1

Equivalently, by Theorem 1.8,

(n− 1)S2
X

σ2
X

∼ χ2
n−1,

(m− 1)S2
Y

σ2
Y

∼ χ2
m−1

and these two random variables are independent. Using this, let U ∼ χ2
n−1 and V ∼ χ2

m−1 be independent,

S2
X/σ2

X

S2
Y /σ

2
Y

=
U/(n− 1)

V /(m− 1)
∼ Fn−1,m−1

Theorem 1.11 (Properties of F -distribution). Let F be a random variable with an F -distribution with p and q

degrees of freedom (p, q ≥ 2 and p, q ∈ N∗). Then

i. The probability density function of F is

fF (x) =
Γ
(
p+q
2

)
Γ
(
p
2

)
Γ
(
q
2

) (p

q

) p
2 x

p
2−1(

p
qx+ 1

) p+q
2

1x>0, ∀x ∈ R

ii. When q > 2, then the expectation of F is q
q−2 .

iii. When q > 4, then the variance of F is 2q2(p+q−2)
p(q−4)(q−2)2 .

Proof. i. Let U ∼ χ2
p and V ∼ χ2

q be independent. F can be expressed as U/p
V /q by Definition 1.10.

The joint density of (U, V ) is

fUV (u, v) = fU (u)fV (v) by independence

=
1

Γ(p2 )2
p
2

u
p
2−1e−

u
2 1u>0

1

Γ( q2 )2
q
2

v
q
2−1e−

v
2 1v>0

=
1

Γ(p2 )Γ(
q
2 )2

p+q
2

u
p
2−1v

q
2−1e−

u+v
2 1u>01v>0 ∀u, v ∈ R
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LetW := V . We are going to change from variables (U, V ) to (F,W ). The Jacobian is

J =

[
∂F
∂U

∂F
∂V

∂W
∂U

∂W
∂V

]
=

[
q
pV

∂F
∂V

0 1

]
=⇒ det J =

q

pV

For the realized values F = x andW = w,

u =
pxw

q
, v = w

Then the joint pdf of F andW is

fFW (x,w) = (det J−1)fUV

(
pxw

q
,w

)
=

pw

q

1

Γ(p2 )Γ(
q
2 )2

p+q
2

(
pxw

q

) p
2−1

w
q
2−1e−

pxw
q

+w

2 1x>01w>0

=
1

Γ
(
p
2

)
Γ
(
q
2

) (p

q

) p
2

w
p+q
2 −1e−

1
2 (

p
q x+1)wx

p
2−1

1x>01w>0

Recall that for a Gamma distribution with shape k and scale θ, the pdf is

1

Γ(k)θk
xk−1e−

x
θ := g(x; k, θ)

and ∫ ∞

0

g(x; k, θ)dx = 1

Hence we have the following: ∫ ∞

0

xk−1e−
x
θ = Γ(k)θk

The density of F , fF (x), is just the marginal density, which can be calculated as follows:

fF (x) =

∫
R
fFW (x,w)dw

=
1

Γ
(
p
2

)
Γ
(
q
2

) (p

q

) p
2

x
p
2−1

1x>0

∫ ∞

0

w
p+q
2 −1e−

1
2 (

p
q x+1)wdw

=
1

Γ
(
p
2

)
Γ
(
q
2

) (p

q

) p
2

x
p
2−1

1x>0Γ

(
p+ q

2

)(
2

p
qx+ 1

) p+q
2

let k =
p+ q

2
, θ =

2
p
qx+ 1

= fF (x) =
Γ
(
p+q
2

)
Γ
(
p
2

)
Γ
(
q
2

) (p

q

) p
2 x

p
2−1(

p
qx+ 1

) p+q
2

1x>0

ii. The expectation of F is

E[F ] =

∫ ∞

0

x
Γ
(
p+q
2

)
Γ
(
p
2

)
Γ
(
q
2

) (p

q

) p
2 x

p
2−1(

p
qx+ 1

) p+q
2

dx

Perform a change of variables:
p

q
x =

p+ 2

q − 2
y, dx =

q(p+ 2)

p(q − 2)
dy

9



E[F ] =

∫ ∞

0

Γ
(
p+q
2

)
Γ
(
p
2

)
Γ
(
q
2

) (p

q

) p
2 x

p
2(

p
qx+ 1

) p+q
2

dx

=
Γ(p+2

2 )Γ( q−2
2 )

Γ(p2 )Γ(
q
2 )

∫ ∞

0

Γ
(
p+q
2

)
Γ
(
p+2
2

)
Γ
(
q−2
2

)
(

p+2
q−2y

) p+2
2 −1

(
1 + p+2

q−2y
) p+q

2

q(p+ 2)

p(q − 2)
dy

=
Γ(p+2

2 )Γ( q−2
2 )

Γ(p2 )Γ(
q
2 )

q

p

∫ ∞

0

Γ
(
p+q
2

)
Γ
(
p+2
2

)
Γ
(
q−2
2

) (p+ 2

q − 2

) p+2
2 y

p+2
2 −1(

1 + p+2
q−2y

) p+q
2

dy

=
Γ(p+2

2 )Γ( q−2
2 )

Γ(p2 )Γ(
q
2 )

q

p
· 1 the integrand is pdf of Y ∼ Fp+2,q−2 by i

=
p
2Γ(

p
2 )Γ(

q−2
2 )q

Γ(p2 )
q−2
2 Γ( q−2

2 )p
by property of the Γ function

=
q

q − 2

iii. To find the variance of F , we use the identity

Var[F ] = E[F 2]− (E[F ])2

E[F 2] =

∫ ∞

0

x2 Γ
(
p+q
2

)
Γ
(
p
2

)
Γ
(
q
2

) (p

q

) p+4
2 −1

q

p

x
p
2−1(

p
qx+ 1

) p+q
2

dx

Perform a change of variables:
p

q
x =

p+ 4

q − 4
w, dx =

q(p+ 4)

p(q − 4)
dw

E[F 2] =
Γ(p+4

2 )Γ( q−4
2 )

Γ(p2 )Γ(
q
2 )

∫ ∞

0

Γ
(
p+q
2

)
Γ
(
p+4
2

)
Γ
(
q−4
2

)
(

p+4
q−4w

) p+4
2 −1

(
1 + p+4

q−4w
) p+q

2

q(p+ 4)

p(q − 4)
dw

=
Γ(p+4

2 )Γ( q−4
2 )

Γ(p2 )Γ(
q
2 )

q2

p2

∫ ∞

0

Γ
(
p+q
2

)
Γ
(
p+4
2

)
Γ
(
q−4
2

) (p+ 4

q − 4

) p+4
2 w

p+4
2 −1(

1 + p+4
q−4w

) p+q
2

dw

=
Γ(p+4

2 )Γ( q−4
2 )

Γ(p2 )Γ(
q
2 )

q2

p2
· 1 the integrand is pdf ofW ∼ Fp+4,q−4 by i

=
q2Γ(p2 )

p
2
p+2
2 Γ( q−4

2 )

p2Γ(p2 )
q−2
2

q−4
2 Γ( q−4

2 )
by property of the Γ function

=
q2(p+ 2)

p(q − 2)(q − 4)

Var[F ] = E[F 2]− (E[F ])2

=
q2(p+ 2)

p(q − 2)(q − 4)
− q2

(q − 2)2

=
2q2(p+ q − 2)

p(q − 4)(q − 2)2

Theorem 1.12. If X ∼ Fp,q , then 1
X ∼ Fq,p.
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Proof. By Definition 1.10, X = U/p
V /q , where U ∼ χ2

p and V ∼ χ2
q are independent.

Then 1
X = V /q

U/p ∼ Fq,p by Definition 1.10 again.

Theorem 1.13. If X ∼ Fp,q , then
p
qX

1+ p
qX

∼ Beta(p2 ,
q
2 ).

Proof. Let Y =
p
qX

1+ p
qX

. Hence, X = qY
p(1−Y ) =⇒

dx
dy = q

p
1−y−(−1)y

(1−y)2 = q
p(1−y)2 . The density of Y is:

fY (y) = fX

(
qy

p(1− y)

) ∣∣∣∣dxdy
∣∣∣∣

=
Γ(p+q

2 )

Γ(p2 )Γ(
q
2 )

(
p

q

) p
2

(
qy

p(1−y)

) p
2−1

(
1 + p

q
qy

p(1−y)

) p+q
2

q

p(1− y)2

=
1

B(p2 ,
q
2 )

(
y

1− y

) p
2−1(

1 +
y

1− y

)− p+q
2 1

(1− y)2

=
1

B(p2 ,
q
2 )

y
p
2−1(1− y)−

p
2+1+ p+q

2 −2

=
1

B(p2 ,
q
2 )

y
p
2−1(1− y)

q
2−1

This is the probability density function of Y ∼ Beta(p2 ,
q
2 ).

Theorem 1.14 (Properties of t-distribution). Let T be a random variable with a t-distribution of p degrees of
freedom (p ≥ 2 and p ∈ N∗), i.e. T ∼ tp. Then

i. The probability density function of T is

fT (t) =
Γ
(
p+1
2

)
Γ
(
p
2

) · 1
√
πp

· 1(
t2

p + 1
) p+1

2

, ∀t ∈ R

ii. The expectation and variance of T is

E[T ] = 0, Var[T ] =


p

p−2 , when p ≥ 3

undefined, when p = 2

Proof. i. By Definition 1.9,

T =
U√
V
p

where U ∼ N (0, 1) and V ∼ χ2
p are independent.

The joint probability density function of U and V is

fUV (u, v) = fU (u)fV (v) by independence

=
1√
2π

e−
u2

2
1

Γ(p2 )2
p
2

v
p
2−1e−

v
2 1v>0, ∀u, v ∈ R

LetW := V . We are going to change from variables (U, V ) to (T,W ). The Jacobian is

J =

[
∂T
∂U

∂T
∂V

∂W
∂U

∂W
∂V

]
=

[√
p
V

∂T
∂V

0 1

]
=⇒ det J =

√
p

V

For the realized values T = t andW = w,

u =

√
w

p
t, v = w

11



Then the joint pdf of T andW is

fTW (t, w) = (det J)−1fUV

(√
w

p
t, w

)
=

√
w

p

1√
2π

e−
wt2

2p
1

Γ(p2 )2
p
2

w
p
2−1e−

w
2 1w>0

The pdf of T is a marginal distribution and can be calculated as

fT (t) =

∫
R
fTW (t, w)dw

=
1√
2π

· 1

Γ
(
p
2

)
2

p
2
√
p

∫ ∞

0

w
p+1
2 −1e

− 1
2

(
t2

p +1
)
w
dw

=
1√
2π

· 1

Γ
(
p
2

)
2

p
2
√
p
Γ

(
p+ 1

2

)(
2

t2

p + 1

) p+1
2

let k =
p+ 1

2
and θ =

2
t2

p + 1
for a Gamma random variable

=
Γ
(
p+1
2

)
Γ
(
p
2

) · 1
√
πp

· 1(
t2

p + 1
) p+1

2

ii. The expectation and variance of T can be calculated by merely evaluating integrals:

E[T ] =
∫ ∞

−∞
t
Γ
(
p+1
2

)
Γ
(
p
2

) · 1
√
πp

· 1(
t2

p + 1
) p+1

2

dt

Note that the integrand is an odd function, so the integral equals 0, i.e., E[T ] = 0. For the variance:

Var[T ] = E[T 2]− (E[T ])2

=

∫ ∞

−∞
t2
Γ
(
p+1
2

)
Γ
(
p
2

) · 1
√
πp

· 1(
t2

p + 1
) p+1

2

dt− 0

= 2

∫ ∞

0

t2
Γ
(
p+1
2

)
Γ
(
p
2

) · 1
√
πp

· 1(
t2

p + 1
) p+1

2

dt the integrand is an even function

= 2

∫ ∞

0

u
Γ
(
p+1
2

)
Γ
(
p
2

) · 1
√
πp

· 1(
u
p + 1

) p+1
2

· du

2
√
u

let u = x2

=

∫ ∞

0

u
Γ
(
p+1
2

)
Γ
(
p
2

)
Γ
(
1
2

) (1

p

) 1
2

u
1
2−1

(
1 +

u

p

)− p+1
2

du using Γ
(
1

2

)
=

√
π

By Theorem 1.11, the integrand is that of u multiplied by the pdf of an F distribution with 1 and p degrees of
freedom, which is equal to p

p−2 . So Var[T ] = E[T 2] = p
p−2 for p > 2. When p = 2, the pdf of T is the same

as that of a standard Cauchy distribution, where the variance is undefined.

Theorem 1.15 (Connection of t-distribution and Normal distribution). Let T ∼ tp. Then T ⇝ N (0, 1) as p → ∞

Proof. The density of T is

fT (t) =
Γ
(
p+1
2

)
Γ
(
p
2

) · 1
√
πp

· 1(
t2

p + 1
) p+1

2

=
Γ
(
p+1
2

)
Γ
(
p
2

)√
πp

(
1− t2

t2 + p

) p+1
2

12



lim
p→∞

fT (t) = lim
p→∞

Γ(p+1
2 )

Γ(p2 )
√
πp

lim
p→∞

(
1− t2

t2 + p

) p+1
2

For the first term, we rely on Stirling’s approximation for Gamma functions:

lim
x→+∞

Γ(x)√
2π(x− 1)

(
x−1
e

)x−1 = 1

lim
p→∞

Γ(p+1
2 )

Γ(p2 )
√
πp

= lim
p→∞

√
2π p−1

2

(
p−1
2

) p−1
2 e−

p−1
2

√
πp
√

2π p−2
2

(
p−2
2

) p−2
2 e−

p−2
2

= lim
p→∞

√
p− 1

πp(p− 2)
e−

1
2

(
p− 1

2

) 1
2
(
p− 1

p− 2

) p−2
2

=
e−

1
2

√
2π

lim
p→∞

√
(p− 1)2

p(p− 2)
lim
p→∞

(
1 +

1

p− 2

) p−2
2

=
e−

1
2

√
2π

· 1 ·
√
e =

1√
2π

The second term is nonnegative, so

lim
p→∞

(
1− t2

t2 + p

) p+1
2

=

(
lim
p→∞

(
1− t2

t2 + p

)p+1
) 1

2

=
√
e−t2 = e−

t2

2

Combining the two terms,

lim
p→∞

fT (t) = lim
p→∞

Γ(p+1
2 )

Γ(p2 )
√
πp

lim
p→∞

(
1− t2

t2 + p

) p+1
2

=
1√
2π

e−
t2

2

which is the pdf of standard normal distribution.

Theorem 1.16 (Connection of t and χ2 distributions). If X ∼ tp, then X2 ⇝ χ2
1 as p → ∞

Proof. As p → ∞, X ⇝ N (0, 1) by Theorem 1.15. Since the mapping x 7→ x2 is continuous, by Theorem 1.7
and Theorem 5.5 (g) in All of Statistics (2004) by Wasserman [2], tp ⇝ χ2

1.

Theorem 1.17 (Connection of t and F distributions). If X ∼ tp, then X2 ∼ F1,p.

Proof. The density of Y := X2 is

fY (y) = (fX(
√
y) + fX(−√

y))

∣∣∣∣dxdy
∣∣∣∣

= 2fX(
√
y)

∣∣∣∣dxdy
∣∣∣∣ as fX is an even function

= 2

 Γ(p+1
2 )

√
πp Γ(p2 )

1(
y
p + 1

) p+1
2

 1

2
√
y

by Theorem 1.14

=
Γ(p+1

2 )

Γ( 12 )Γ(
p
2 )

(
1

p

) 1
2 y

1
2−1(

1 + 1
py
) p+1

2

which is the density of Y ∼ F1,p by Theorem 1.11.
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