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1 Properties of a Random Sample
1.1 Independence
Theorem 1.1. Suppose X1, Xo, ..., X, = N(y,02)
Define random variables X and S? as the following:
X :lzn:X §2 i L Zn:(X - X)?
n i=1 ; . n—1 i=1 '
Then X ~ N (p, Z-)
Proof. ¥t > 0, the characteristic function of X is:
ox(t) = o ‘
X - Z?:l X n
n
t
i (2)
n
=1
t n
~ (o= (2)
n
r 2(Ly2
= exp{i_pun — —t=—n}
o212
= ity —
explitp — +5—}
which is the characteristic function of N'(, %2) O

To facilitate with the following proofs, we introduce the following theorems (Theorem 4.6.11 and Theorem 4.6.12)
in Statistical Inference (2001) by Casella & Berger [1], which are the generalizations of two lemmas and are not

proved in the textbook.

Theorem 1.2. Let X, ..., X,, be random vectors. Then they are mutually independent random vectors if and only

if there exist functions g;(x;),i = 1, ..., n such that the joint pdf or pmf of (X7, ..., X,,) can be written as

f(xlw"vxn) :g1(l‘1) o gn(xn)



Proof. 1. (=) By the definition of independence,

f@,..ozn) = fi(@a) - falzn)
where f;(x;) is the marginal probability density functions of X;. So we have found these functions.

ii. (<=) Denote d; as the dimension of each random vector and let d := ., d;. Define
Ci = / gi(xi)diﬂz'
R
Since f(x1,...,2,) is the joint pdf, then
flxy, ..., xy)dzy ... dx, definition of pdf
d
= /zd gr(xy) - gn(xp)dxy ... dx, by assumption
R i=1%

= H / gi(z;)dz; by Fubini’s Theorem in Euclidean space
i=1 ¢

n

-1l

Furthermore, the marginal distribution of X;,72 = 1,...,n can be given by

::]:

f = gz *TL (1.1)
j:
J#i
which could be easily verified. Note that
IHIIG=1111¢/ I11I¢ci =111/ I]¢ci=1 (1.2)
i=1j=1 i=1j=1 i=1j=1 i=1 i=1
J#i j=1
And using this,
n
flze, ... x,) = Hgl(xl) by assumption
i=1
= ( gl(zz)> H H o by Equation 1.2
i=1 i=1j=1
j#i
= H gi Cj
i=1 j=1
75
n
fi(x;) by Equation 1.1
i=1
Since f;(x;) is the marginal distribution of X;,i = 1,...,n, (Xy,...,X,) are independent random vectors
by definition of independence.
O
Theorem 1.3. Let X1,..., X, be independent random vectors. Let g;(x;) be a function only of =; whose range
is a subset of R, 7 = 1, ..., n. Then the random variables U; := ¢;(X;),% = 1, ..., n, are mutually independent.



Proof. Denote d; as the dimension of each random vector and let d := >, d;.
Yu; € Ryi=1,...,n, define
A = {z € RY - g(x) < u;}

The joint cumulative distribution function (cdf) of g1 (X1), ..., gn(Xy) is:
F(uh sy Un ) = IP>{gl()(l) <up,... agn(Xn) < un}
=P{X; € AD,... X, € AM}
= HIP’{Xi € Affi)} by independence of X;’s
i=1

Denote X;; as the j-th entry of the i-th random vector X;, where 1 <7 <n,1 < j <d;.
The joint pdf of g1 (X1), ..., gn(X,) is:

ad
flur, .. up) = ———g———F(u1,...,up)
| H?;l &Uij
oxiz1d

- H P{X} € Auk }
Hz 1 HJ 1 045 o

ad

—P{X; € AV}

i=1 H] 1 0ij

i=1

Hence, the joint pdf is the product of a series of n functions where the i-th function is of g;(X;) only, for each .

By Theorem 1.2, we conclude that g1 (X1), ..., g,(X,) are independent. O

Theorem 1.4. Let X and S? defined as in Theorem 1.1. Then X and S? are independent.

Proof.
52 — 1 i(X’L o 7)2
n—1 p
1 n
= X; — X))+ (X; - X)?
— L_; 2+ (X )]
1 n n 2
— Y )2 %
= {ZX_;(XZ X+ (Z;(X@ —X))
because > (X; — X) = 0.
The joint probability density function of X1, X5, ..., X,, is:
flz1,29,...,x ):ﬁ ! exp{— (s )2} by independence
i V2mo

~ G P
We would like to perform a change of variables on the probability density function with the following:
Vi=X,Yo=Xo—-X,YV3=X3-X,....V, =X, - X
The realized values of Y;’s and X;’s relate as follows:

Y1 =2,Y2=T2 —T,Y3 =23 —T,...,Yp = Tpn —



Solving these n equations, we obtain:

n

T1 =Y *Zyn,@:y2+y1,933:y3+yl7~--,1’n =Yn + U1
i=1

The Jacobian J of the transformation is:

1 1 1 17
n n n n
_1 _1 _1 _1
n 1 n n n
1 1 1 1
J=|"% —w l-u “
_1 _1 _1 _1
o n n n 1 n-
The determinant of J is
1 1 1 1
n n n n
1 _ 1 _1 _1
_’I'L 1 n n n
1 1 1 1
detJ=|—5 —n 1-3 n
1 _1 _1 _ 1
_’I'L n n 1 n
11 1
n n n
0 1 1 .
=1 = — expanding over the first column
0 1

The second row is obtained by adding the first row of .J to all following rows. This is valid because of the property
that the determinant does not change by elementary row operations.

Then the joint probability density function of Y7, Ys, ... Y, is:

Fyisyas - syn) = (detJ‘l)m exp{—% <(?J1 =Y i Y ity - u)2>} (1.3)

i=2 =2
Calculating the terms in large parenthesis:

n n
W= v =)+ Y ity —n)?
i=2 i=2
n n n
=i+ Q)+ i =201 ) yi 2t 20y i

=2 =2 =2
n

Y - Dyt + (n— D 20 >y — 20> yi—2(n— Dyip
=2 =2 =2

n n
=np® =2y +nyt + Y ui + O i)
=2 =2



Substituting back to Equation 1.3:

1 1 1 9 9 1 2L, o,
o Un) = ——=—————exp{— = (np® — 2 = , ’
f1,y2, - yn) det J (2m) 20 exp{ 252 (np — 2ny1p + nyy) exp{ 552 <§y7 + (;y) }
_ et (S (S )2
= Gy exp{—5 5 (v — ) Fexpi—g 5 (; y; + (gyl) )}
B n n o, _ 5 1 - 9 - N i
= amygn S5 (@ o5 5 (Z;(ffi—x) (=) )} change to 7:'s

2
n n T S .o, .
= (2m)/2en exp{—ﬁ(x - )%} exp{—ﬁ} by definition of s?

=C- 91(y1)gz(y2, . ,yn) = §1(y1)gz(y2, ce ,yn)

Hence, Y; = X and Y5, ...,Y,, are independent by Theorem 1.2. As S? is a function only of Y3,...,Y,,, by

Theorem 1.3 we conclude that X and S? are independent. O

1.2 The Chi-squared distribution

Definition 1.5 (x? distribution). For a x? distribution with p degrees of freedom, the probability density function

1S

1 P x
5—1,—3

X2 e 2 ]12E>0

I(5)22

This is actually a Gamma distribution with shape £ and scale 2.

fz) =

Lemma 1.6. If W, ~ x2 and W, ~ x3, that are independent, then W1 + Wy ~ x3 .
Proof. The characteristic function of Gamma(k, 6) is
(1—ith) =%Vt >0
Hence, Vt > 0, by property of x? distribution listed in Definition 1.5,
ow, (1) = (1-2t) %, pu, (1) = (1 - 2t)~ %
The characteristic function of W7 + W5 is then
Pw+ws (1) = dw, () dw, (t) = (1 — 2ti)

which is the characteristic function of Xz2>1 +pa- O

_p1tp2
2

Lemma 1.7. If Z ~ N(0,1), then Z2 ~ x3
Proof. Yz > 0, the probability distribution function of Z2 is:
Fp2(2) =P(Z% < 2)
=P(—Vz<Z<V57)

—_

vz th
= e 2dt
/_\/g V2n

This is differentiable by the Fundamental Theorem of Calculus, so

d d (V2 1 _p
fz2(2) = —Fgz2(2) = —/ ——e 2 dt

dz dz ,\/;\/ﬂ
1 1 = -1 _:
p— —e 2 2
2Vz\27 2z
= 1 67%
V2rz



The probability density function of x? is

1 1_1 i 1 x
T) = T2 e 2,0 = e 21,
@)= F e T Vom0
using the fact that I'() = /7. Hence, Z% ~ x?
Theorem 1.8. Let S? is the same as defined in Theorem 1.1. Then w ~xX2_4

Proof. For1 < k < n, define:

wm
H

B

?r\'—‘

Claim: for k > 2,
(=182 (=282, k-1
o2 - o2 ko? (Xp = Xp—1)

The claim is proved as the following direct calculation:

[k k—1
(k—1)82  (k—2)S;_ 1 _ _
= ko _ = L = D (X = XR)? =) (X — Xea)?
=1 1=1
1 [k - B k—1 ~ ~
== Z(Xf —2X. X; + X}P) — Z(Xf —2X 1 X; + Xﬁ_l)]
Li=1 =1
1 _ _ _ _
= — [Xi —kX{ + (k—1)X;_,] by definition of X} and X;_;
g
10 (k—1)Xp_1 + Xy 5
— o R R g
1 [k-1 20k 1), o E—1_,
=— X, — X Xp 14+ —X
o2 |k k A kAk—1 T A k-1
k-1 _
= 4= (X1, — X5 1)?

With this claim, we can prove the theorem by an argument of induction.

i. Base case: whenn = 2,

-1 2 2 1
u = S% = 272(X2 — X1)? by the claim
o o

()

By an argument similar to Theorem 1.1 using characteristic functions, (Xf/ix 1 ) ~ N(0,1).

g

2
By Lemma 1.7, =15 — (Xaf;jﬁ) ~ 2
Hence, base case holds.

ii. Assume that the theorem holds forn = k£ > 2, i.e.,

(k—1)S?
Y2~ X%q

iii. Inductive step: when n = k + 1, by the claim above,

KSE.  (E-1SE K .
= X - X
o? a? * (k+ 1)02( b )




By the assumption in step (ii), the first term on the right hand side has a x?_, distribution. By Lemma 1.6, to
prove that the theorem holds for n = k£ + 1, we only need to prove that

L _
v X _ X 2 ~ 2
(k + 1)0_2( k+1 k) X1
By the setup and the conclusion in Theorem 1.1, we know that X, ~ N (u,02) and X5, ~ N (i, "72)

Consider the random variable X1 — Xj. The expectation is 0 because of the linearity of expectation. Since
this random variable is a linear combination of normal random variables, it is still normally distributed. Its

variance is:

Var(Xj1 — Xy) = Var(Xj 1) + (—1)? Var(X},) since X1 and Xy, X», ..., X} are independent

f02+0727 (k+1)o?
N ko k
Normalizing X1 — X}, we obtain -
X1 — X
Lktl T Ak ~ N(0,1)
e
Then
N2
k > Xi41 — Xk
T e en — X = | T )

[ k+1
g

by Lemma 1.7, as the term inside the parentheses has standard normal distribution.

Therefore, the theorem holds by induction. O

1.3 Student’s t distribution and Snedecor’s F distribution

In the following, we introduce the ¢-distribution and the F-distribution, as well as their respective properties and
connections between the two families of distributions.

Given n observations from the same normal distribution, we can use Theorem 1.8 to build a confidence interval
for the true mean 1 of the normal distribution provided its variance o2. However, usually we lack this information
as well. One solution is to replace the standard deviation o by the square root of the sample variance S2. And this
leads us to Student’s t-distribution.

Following Theorem 1.1,
- o? X—p nX-p
X ~ , — = ~ 071
N(u - ) = YN - N(0,1)

by standardizing the normal random variable X. Then

VX —p) V(X —p) o VX -—p) 1
S o S o 52
0.2
By Theorem 1.8, ("_012)3 ‘e X¢2171~ Combining this with Theorem 1.4, we can write m as:

V(X —p) 1
f_z. —

n—1

where Z ~ N(0,1) and V ~ x2_, are independent.



Definition 1.9 (¢-distribution). Let Z ~ N (0,1) and V ~ X% be independent (p > 2 and p € N*). Then

Z
T:=—

s <

has a Student’s ¢-distribution with p degrees of freedom, denoted as 1" ~ ¢,,.

To step further, suppose we have two samples we can define Snedecor’s F'-distribution:

n—1
iid. S\ 9
X1, X0 N Nux,0%), ZX“ 52 = — Z;(XZ- - X)
" n—1
Yi,.. Yn NN(NYaUY ZYu 5% = n_lz(Yi—Y)Q

where all X;’s and Y;’s are independent.

Definition 1.10 (F'-distribution). The quotient
S%/o%
Sy /oy

is defined to admit an F'-distribution with n — 1 and m — 1 degrees of freedom, denoted as F' ~ Fj,_1 p,—1

F =

Equivalently, by Theorem 1.8,

(n—1)8% 2 (m—1)S% 2
T ~ Xn-1 ? ~ Xm-1
and these two random variables are independent. Using this, let U ~ x2_; and V ~ x?2,_; be independent,
S% /0%  U/(n—1
S$loy  Vim—1

Theorem 1.11 (Properties of F'-distribution). Let F' be a random variable with an F'-distribution with p and ¢
degrees of freedom (p, ¢ > 2 and p, ¢ € N*). Then

i. The probability density function of F' is

T (P4 2
fF(l'):Fp(]?)q <p> ﬁ:ﬂ-w>0; Ve e R
BRANRS
ii. When ¢ > 2, then the expectation of F' is q%Q'

2¢° (p+q—2)

iii. When g > 4, then the variance of F' is CEN =R

Proof. 1. LetU ~ Xp and V' ~ Xq be independent. F' can be expressed as V P by Definition 1.10.
The joint density of (U, V) is

fov(u,v) = fu(u)fy(v) by independence

= L _uilem 5] 071 viTlem2] 0
r(5)2% ()2 -
1 r_1 9_1 _utwv
:7+u2 v2 e 2 lysolyso Yu,v €R
L(5)r(§)2



Let W := V. We are going to change from variables (U, V') to (F, W). The Jacobian is

<‘9F oOF a OF q
J = vl =1V VI —det] = —
1 I v

For the realized values F' = x and W = w,

Then the joint pdf of F' and W is
_ prw
frw (z,w) = (detJ ") fuy ( )

B 1 pPTW
W 2 %71 77{]24—“1]1 ]1
F(g)F(%)Q 42, p w € >0414w>0

_ 1 p : pta_q 77( w+1)w -1

pw
q

Recall that for a Gamma distribution with shape k and scale 6, the pdf is

1 a:
2" te™ 8 = g(x; K, 0)

and

Hence we have the following:

= P 511 /Oo PR -1 -3 (Fr+Dw g
F(%)F(%) <Q> R w
1 P\* s P+ 2\ 7 prq ., 2
“rr (o) e (% )<5x+1> SR
I (2te P 5 51
2 2 (E.T—i—l) 7
q

Perform a change of variables:



(NS}

+2
2 2 1 + 572
P(*2)0(5%) ¢
= =1 theintegrand is pdfof Y ~ Fj49 , 2 by
rerE) » P+2,
PT(R\(4=2
= 2p ((Izjz ( 2,2(] by property of the I" function
L(5)FT (4 )p
__9
q—2

iii. To find the variance of F', we use the identity

Var[F] = E[F] - (E[F))*

o0 T (BEe P 21
o= ety (5) b
0 5 bl q Dy Tz
(qx+1)
Perform a change of variables:
4
fxfziw, dxzq<p+4)dw
¢ q-4 plg—4)
ptd_q
_ o ptd 2
g = TR [T () (o) © gpen,
rHrE) Jo r(EH (4% <1+p+4w)¥ plg—4)
q—4
p+a
TN @ T pra)
TETE) p*Jo T(H)T () \a- i\
2 2 (2) (2) (1_’_5:1“))
F(L;L)F(q;;) ’ 1 theint dispdf of W ~ F, by i
= = e integrand is pdf o ~ 4,q—4 by 1
THNE) »? et
2 (kY2 (g4
= g 1(02232 374< 371 by property of the I" function
()T 45T ()
__ P(p+2
plg—2)(g—4)
Var[F] = E[F?] — (E[F])
__¢+2) ¢
plg—2)(¢—4) (¢—-2)
2¢>(p+q—2)

~ plg—4)(q—2)?

Theorem 1.12. If X ~ F}, ;, then + ~ F, ..

10



Proof. By Definition 1.10, X = %” , where U ~ Xp and V' ~ Xq are independent.

Then % = U—;p ~ Fy », by Definition 1.10 again. O

Theorem 1.13. If X ~ F, ,, then - JfX ~ Beta(Z,

N’\‘G
b
—

Proof. LetY = HpX Hence, X = % = % = %1_(341_7;_)21)‘1’ = p(1€y)2- The density of Y is:

B(%.9)
1 1 4-1
= y: (1—-y)?
B9
This is the probability density function of Y ~ Beta(%, 1). O

Theorem 1.14 (Properties of ¢-distribution). Let 7" be a random variable with a ¢-distribution of p degrees of
freedom (p > 2 and p € N¥),i.e. T' ~ t,. Then

i. The probability density function of 7" is

ii. The expectation and variance of 7" is

L when p > 3
E[T] =0, Var[T] = { P72 b=
undefined, whenp = 2

Proof. 1. By Definition 1.9,

where U ~ N (0,1) and V ~ ij are independent.
The joint probability density function of U and V is

fov(u,v) = fu(u)fyy(v) by independence

1 2 1 v
Tz vg_le_fllwo, Yu,v € R

= e >
V2T INCIPH
Let W := V. We are going to change from variables (U, V') to (T, W). The Jacobian is

[M M] l T OT D
J = Vl=|VY VI —=detJ =,/
oW W
U oV U 4
w
u=,/—t,v=w
V p

11

For the realized values T'=tand W = w,



Then the joint pdf of 7" and W is

fTw(t,’w) = (det J)_lfUV \/?t,w)

— g 1 672#2 1 w%_le_% 1
= » o F(g)Q% w>0
The pdf of T is a marginal distribution and can be calculated as
frt) = [ frw(t,w)dw

R

- 5 T s (g,
2 T (8)25/p Jo
pEl
1 1 1 2 ’ 1 2 .

= ST =1 (p i ) <t2 letk = 1% and § = ;—— for a Gamma random variable

Var T (§)2%p 2 o 1 =+l
) v

1
rE) v (24 1)‘%
p
ii. The expectation and variance of 7' can be calculated by merely evaluating integrals:
< T(EE) 1 1
E[T]:/ t (57) . —dt
—0o0 r (g) vV ™ +2 2
(5+1)

Note that the integrand is an odd function, so the integral equals 0, i.e., E[T] = 0. For the variance:

Var[T| = E[T?] — (E[T]

o L T(EY) 1 1
:/ t2(§)- : —dt — 0
—0o0 r(§) VTP 2 2
(5+1)
o L T(E) 1 1
=2 / t2 ( 2 ) : : —dt the integrand is an even function
o T() v (2+1)"
p

2

letu =x

2 . . . du
5 v (uH)”T 2Vu

= /Ooourfg(;;lé) (;)éuél <1+ ;‘)pgldu using T <;> _Jr

By Theorem 1.11, the integrand is that of u multiplied by the pdf of an F’ distribution with 1 and p degrees of
freedom, which is equal to -£5. So Var[T] = E[T?] = 515 for p > 2. When p = 2, the pdf of 7" is the same
as that of a standard Cauchy distribution, where the variance is undefined.

O

Theorem 1.15 (Connection of ¢-distribution and Normal distribution). Let 7" ~ ¢,. Then T~ N(0,1) as p — oo

Proof. The density of T'is




(%) o\
lim t)= lim ——=— lim (1— ———
A1 IO = I gy < 2 +p)
For the first term, we rely on Stirling’s approximation for Gamma functions
I'(z)

1 p—1\Te ot
ey 2arbet (B5r) T e
lim () = ll)m =2 -
R LOVIP e e faneg? (252) T et
. p—1 1 (p—1\2%2/(p—1 B
= lim ez | — —
p—00 7Tp(p—2) 2 p—2
-3 1)2 pz;z
_€e: (p—1)?2 . <1+ )
V2 p=oo || p(p — 2) p=oo -2
e 2 1
= 1-Ve=—
ous ve V2

The second term is nonnegative, so

20\ 2 \Pt! z -
Iim |(1— = Ilm (11— ——— =Vet? = 7
p—00 12 +p p—>00 t2 +p

Combining the two terms,

y . (&) i (1t L e
= P e — e —— = 2
m, fr() = lim T(2)y/7p poso ( t2 +p> Vo
which is the pdf of standard normal distribution. O

Theorem 1.16 (Connection of ¢ and x? distributions). If X ~ ¢, then X% ~~ x% as p — o0

Proof. Asp — 0o, X ~» N(0,1) by Theorem 1.15. Since the mapping = — 2 is continuous, by Theorem 1.7
and Theorem 5.5 (g) in A/l of Statistics (2004) by Wasserman [2], t,, ~ x3. O

Theorem 1.17 (Connection of ¢ and F distributions). If X ~ ,, then X2 ~ F} ,,.

Proof. The density of Y := X? is

dx
Iy () = (fx(Vy) + fx(=V/v)) a
fx( ‘ ‘ as fx is an even function
+
= 1 1
% ; T | 5 by Theorem 1.14
(%) + 1) 2 VY
(%) % ys~!
— ) 5 G
(1+3)
which is the density of Y ~ F} j, by Theorem 1.11. O
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