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1 Variational Autoencoder (VAE)

In Kingma and Welling [3], the authors divide the model into an encoder-decoder structure. Given a data

point x, the encoder estimates the distribution qϕ(z |x) over the latent variable z, while the decoder esti-
mates the distribution over x given the latent variable z. ϕ and θ are the parameters of the encoder and

decoder, respectively.

Both the encoder and the decoder are parametrized by Multilayer Perceptrons (MLP), with a hidden

dimension of 500. ReLU is used as activation, except for the lastmapping fromhidden state to reconstruction,

where the sigmoid function is used to get pixel intensities in [0, 1].

VAEs are trained by maximizing the log probability, log p(x):

log p(x) = log p(x)
∫

qϕ(z |x)d z

= Eqϕ(z | x)

[
log
(
p(x, z)
p(z |x)

·
qϕ(z |x)
qϕ(z |x)

)]
= Eqϕ(z | x)

[
log

p(x, z)
qϕ(z |x)

]
+DKL(qϕ(z |x) || p(z |x))

(1.1)

The first term is called evidence lower bound (ELBO). Since the second term (usually referred to asKullback-

Leibler divergence, or relative entropy) is always nonnegative, maximizing the ELBO improves the lower

bound of log p(x). Further decomposing ELBO by conditional probability, we have:

ELBO = Eqϕ(z | x)

[
log

pθ(x | z)pθ(z)
qϕ(z |x)

]
= −DKL(qϕ(z |x) || pθ(z)) + Eqϕ(z | x) [log pθ(x | z)] (1.2)
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When modeling the latent distribution, we assume that it is Gaussian with diagonal covariance matrix, so

we denote the estimated mean and main diagonal as µ(x;ϕ) and σ2(x;ϕ) given a data point x. By assuming

that z encoded by qϕ(·|x) should follow a standard J-dimensional multivariate Gaussian distribution, the

KL-divergence term could be calculated analytically:

−DKL(qϕ(z |x) || pθ(z)) =
1

2

J∑
j=1

(
1 + logσ2

j (x;ϕ)− µ2
j (x;ϕ) + σ2

j (x;ϕ)
)

(1.3)

and the other term from ELBO could be estimated via Monte Carlo. The authors of the original paper claim

that a sample size of 1 is sufficient [3].

2 Diffusion Models

2.1 Denoising Diffusion Probabilistic Models (DDPMs)

Similar to VAEs, the diffusionmodel also consists of two processes - we refer to them as the forward process

and the reverse process. The main differences are that the number of layers, T , is larger, and each latent

variable has the same dimension as the input data x0.

In the forward process (denoted by q), we corrupt the input x ∈ Rd (we suppose that it is an image) with

noise via a noise-level schedule {βt}Tt=1, where 0 < β1 < . . . < βT < 1. Each transition is both Gaussian and

Markovian: let αt = 1 − βt. Then xt ∼ N (
√
αt xt−1, (1 − αt)I). The goal of the forward process is to make

xT into unrecognizable noise, e.g., standard multivariate Gaussian.

In the reverse process (denoted by pθ), we use a deep learningmodel parametrized by θ that reconstructs

the original input by learning to estimate noise levels at each transition.

The joint distribution of the states x0,x1, . . . ,xT during the forward and reverse process are

q(x0,x1, . . .xT ) = q(x0)
T∏
t=1

q(xt |xt−1), pθ(x0,x1, . . . ,xT ) = p(xT )
T∏
t=1

pθ(xt−1 |xt) (2.1)

respectively. Note that by Bayes rule, we have

q(xt |xt−1) = q(xt |xt−1,x0) by Markov property

=
q(xt−1 |xt,x0)q(xt |x0)

q(xt−1 |x0)
by Bayes rule

(2.2)

The optimizing objective is, again, tomaximize the expectation of log density log pθ(x0) over q(x0,x1, . . . ,xT ),
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and this objective can be decomposed as follows:

log pθ(x0) = log
∫

pθ(x0,x1, . . . ,xT )q(x1, . . . ,xT |x0)
q(x1, . . . ,xT |x0)

dx1 · · · dxT

= logEq(x1,...,xT | x0)

[
pθ(x0,x1, . . . ,xT )
q(x1, . . . ,xT |x0)

]
≥ Eq(x1,...,xT | x0)

[
log

pθ(x0,x1, . . . ,xT )
q(x1, . . . ,xT |x0)

]
by Jensen’s Inequality

= Eq(x1,...,xT | x0)

[
log

(
p(xT )

T∏
t=1

pθ(xt−1 |xt)
q(xt |xt−1)

)]
use Eq.2.1

= Eq(x1,...,xT | x0)

[
log

(
p(xT )pθ(x0 |x1)

q(x1 |x0)

T∏
t=2

pθ(xt−1 |xt)
q(xt |xt−1)

)]

= Eq(x1,...,xT | x0)

[
log

(
p(xT )pθ(x0 |x1)

q(x1 |x0)

T∏
t=2

pθ(xt−1 |xt)q(xt−1 |x0)
q(xt−1 |xt,x0)q(xt |x0)

)]
use Eq.2.2

= Eq(x1,...,xT | x0)

[
log

(
p(xT )pθ(x0 |x1)�����q(x1 |x0)

�����q(x1 |x0)q(xT |x0)

T∏
t=2

pθ(xt−1 |xt)
q(xt−1 |xt,x0)

)]

= Eq(x1,...,xT | x0) [log pθ(x0 |x1)]︸ ︷︷ ︸
C0

+Eq(x1,...,xT | x0)

[
log

p(xT )
q(xT |x0)

]
︸ ︷︷ ︸

CT

+
T−1∑
t=1

Eq(x1,...,xT | x0)

[
log

pθ(xt |xt+1)

q(xt |xt+1,x0)

]
︸ ︷︷ ︸

Ct

(2.3)

In Eq.2.3, we have three terms for further decomposition:

• Term C0:

C0 = Eq(x1,...,xT | x0) [log pθ(x0 |x1)]

=

∫
q(x1, . . . ,xT |x0) log pθ(x0 |x1)dx1 · · · dxT

=

∫
q(x1 |x0) log pθ(x0 |x1)dx1

= Eq(x1 | x0) [log pθ(x0 |x1)]

• Term CT :

CT = Eq(x1,...,xT | x0)

[
log

p(xT )
q(xT |x0)

]
=

∫
q(x1, . . . ,xT |x0) log

p(xT )
q(xT |x0)

dx1 · · · dxT

=

∫
q(xT |x0) log

p(xT )
q(xT |x0)

dxT

= −DKL(q(xT |x0)||p(xT ))
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• Terms Ct for t = 1, . . . , T − 1:

Ct = Eq(x1,...,xT | x0)

[
log

pθ(xt |xt+1)

q(xt |xt+1,x0)

]
=

∫
q(x1, . . . ,xT |x0) log

pθ(xt |xt+1)

q(xt |xt+1,x0)
dx1 · · · dxT

=

∫
q(xt,xt+1 |x0) log

pθ(xt |xt+1)

q(xt |xt+1,x0)
dxt dxt+1

=

∫
q(xt+1 |x0)

[∫
q(xt |xt+1,x0) log

pθ(xt |xt+1)

q(xt |xt+1,x0)
dxt

]
dxt+1 by conditional probability

=

∫
q(xt+1 |x0)(−DKL(q(xt |xt+1,x0)||pθ(xt |xt+1)))dxt+1

= −Eq(xt+1 | x0)[DKL(q(xt |xt+1,x0)||pθ(xt |xt+1))]

Thus, the variational lower bound reads:

LVLB = Eq(x1 | x0) [log pθ(x0 |x1)]−DKL(q(xT |x0)||p(xT ))−
T−1∑
t=1

Eq(xt+1 | x0)[DKL(q(xt |xt+1,x0)||pθ(xt |xt+1))]

(2.4)

The above derivation is similar to those derived in other literature [2, 6, 4], and the three terms are some-

times interpreted as the reconstruction term, prior matching term, and consistency terms [4]. The consis-

tency terms aims to match the corresponding steps in the forward process and the reverse process.

Now, we investigate the distributions q(xt |x0) and posteriors q(xt |xt+1,x0) for appropriate choices of t.

Given x0 and t, we apply the forward process outlined by xt ∼ N (
√
αt xt−1, (1−αt)I). By the reparametriza-

tion trick 1 , we can sample an independent noise term εt ∼ N (0, I) and write

xt =
√
αt xt−1+

√
1− αtεt

Recursively doing this:

xt =
√
αt xt−1+

√
1− αtεt

=
√
αt(

√
αt−1 xt−2+

√
1− αt−1εt−1) +

√
1− αtεt

=
√
αtαt−1 xt−2+

√
αt(1− αt−1)εt−1 +

√
1− αtεt

=
√
αtαt−1 xt−2+

√
1− αtαt−1ε̃2 by combining two independent noise (terms in cyan), ε̃2 ∼ N (0, I)

=
...

=

√√√√ t∏
s=1

αs x0+

√√√√1−
t∏

s=1

αtε̃t

=
√
ᾱt x0+

√
1− ᾱtε̃t

by letting ᾱt =
t∏

s=1

αs. Hence, we conclude that q(xt |x0) ∼ N (
√
ᾱt x0, (1− ᾱt)I).

1Reparametrization Trick: Suppose we have ε ∼ N (0, I), then x
D
= µ + σε ∼ N (µ, σ2I). This is also useful during training,

since gradients can go through the learned µθ and σθ.
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Then, by Bayes rule, we compute q(xt |xt+1,x0) =
q(xt+1 | xt,x0)q(xt | x0)

q(xt+1 | x0) relying on theMarkovian assump-

tion of Gaussian forward transitions and the calculation of q(xt+1 |x0) above.

q(xt |xt+1,x0) =
q(xt+1 |xt,x0)q(xt |x0)

q(xt+1 |x0)

∝ exp
{
−1

2

[ ||xt+1−
√
αt+1 xt ||2

1− αt+1
+

||xt−
√
ᾱt x0 ||2

1− ᾱt
− ||xt+1−

√
ᾱt+1 x0 ||2

1− ᾱt+1

]}
∝ exp

{
−1

2

[(
αt+1

1− αt+1
+

1

1− ᾱt

)
||xt ||2 +

(−2
√
αt+1 xt+1

1− αt+1
+

−2
√
ᾱt x0

1− ᾱt

)T

xt

]}

= exp

{
−1

2

[
1− ᾱt+1

(1− αt+1)(1− ᾱt)
||xt ||2 − 2

(√
αt+1(1− ᾱt)xt+1+

√
ᾱt(1− αt+1)x0

(1− αt+1)(1− ᾱt)

)T

xt

]}
The density of a multivariate Gaussian distribution with covariance like σ2I is proportional to

exp
(
− 1

2σ2
||x−µ||2

)
so q(xt |xt+1,x0) ∼ N

(√
αt+1(1− ᾱt)xt+1+

√
ᾱt(1− αt+1)x0

1− ᾱt+1
,
(1− αt+1)(1− ᾱt)

1− ᾱt+1
I
)
.

Before we further derive the training objective (Eq.2.4), we have to define pθ. Since we know the noise

schedule, it suffices to learn the mean vectors at different t if we assume the reverse process also consists

of Gaussian transitions for convenience. We can have a neural network (parametrized by θ) that either

estimates the mean vector directly or estimate the noise given xt and t, i.e., µθ(xt, t) or εθ(xt, t).

We first naïvely choose µθ(xt+1, t + 1), i.e., pθ(xt |xt+1) ∼ N
(
µθ(xt+1, t+ 1), (1−αt+1)(1−ᾱt)

1−ᾱt+1
I
)
. By Ap-

pendix A,

DKL(q(xt |xt+1,x0)||pθ(xt |xt+1))

=
1

2

(
log

det(Σ2)

det(Σ1)
− d+ Tr(Σ−1

2 Σ1) + (µ1 − µ2)
TΣ−1

2 (µ1 − µ2)

)
with µ1, µ2,Σ1,Σ2 to be plugged in.

=
1− ᾱt+1

2(1− αt+1)(1− ᾱt)

∣∣∣∣∣∣∣∣µθ(xt+1, t+ 1)−
√
αt+1(1− ᾱt)xt+1+

√
ᾱt(1− αt+1)x0

1− ᾱt+1

∣∣∣∣∣∣∣∣2
(2.5)

One can also try to estimate the clean, original image x0 [4] starting from (xt, t)with a network xθ(xt, t):

pθ(xt |xt+1) ∼ N
(√

αt+1(1− ᾱt)xt+1+
√
ᾱt(1− αt+1)xθ(xt+1, t+ 1)

1− ᾱt+1
,
(1− αt+1)(1− ᾱt)

1− ᾱt+1
I
)

Then Eq.2.5 becomes
ᾱt(1− αt+1)

2(1− ᾱt)(1− ᾱt+1)

∣∣∣∣∣∣∣∣xθ(xt+1, t+ 1)− x0

∣∣∣∣∣∣∣∣2 (2.6)

Alternatively, we can adopt εθ(xt, t) [2]. We use the reparametrization trick for q(xt |x0)

xt =
√
ᾱt x0+

√
1− ᾱtε̃t ⇐⇒ x0 =

xt−
√
1− ᾱtε̃t√
ᾱt

(2.7)

Replacing x0 in the posterior mean:
√
αt+1(1− ᾱt)xt+1+

√
ᾱt(1− αt+1)x0

1− ᾱt+1

=

√
αt+1(1− ᾱt)xt+1+

√
ᾱt(1− αt+1)

xt+1 −
√
1−ᾱt+1ε̃t+1√
ᾱt+1

1− ᾱt+1

=
1

√
αt+1

xt+1−
1− αt+1√

(1− ᾱt+1)αt+1

ε̃t+1

(2.8)
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As εθ(xt, t) estimates ε̃t, Eq.2.5 reads (by plugging in Eq.2.8):

DKL(q(xt |xt+1,x0)||pθ(xt |xt+1))

=
1− ᾱt+1

2(1− αt+1)(1− ᾱt)

∣∣∣∣∣∣∣∣ 1− αt+1√
(1− ᾱt+1)αt+1

(εθ(xt+1, t+ 1)− ε̃t+1)

∣∣∣∣∣∣∣∣2
= �����1− ᾱt+1

2������
(1− αt+1)(1− ᾱt)

· (1− αt+1)�2

������
(1− ᾱt+1)αt+1

∣∣∣∣∣∣∣∣εθ(xt+1, t+ 1)− ε̃t+1

∣∣∣∣∣∣∣∣2
=

1− αt+1

2αt+1(1− ᾱt)

∣∣∣∣∣∣∣∣εθ(xt+1, t+ 1)− ε̃t+1

∣∣∣∣∣∣∣∣2
(2.9)

In Ho et al. [2], the authors assumed that the original image x0 being scaled within the interval [−1, 1], and

calculated log pθ(x0 |x1) by integrating the normal density in each of the d dimensions separately:

p(x0 |x1) =
d∏

i=1

∫ δ+(x0,i)

δ−(x0,i)
N (xi;µθ(x1, 1), σ

2
1)dxi

δ+(x) =

∞ if x = 1

x+ 1
255 if x < 1

δ−(x) =

−∞ if x = −1

x+ 1
255 if x > −1

(2.10)

Note that µθ(x1, 1) learns to return a good estimate of x0 given x1 and time 1. Hence, if our network esti-

mates noise levels at different time t as in Eq.2.9, then in Eq.2.10, given x0, µθ(x1, 1) = x1−εθ(x1, 1).

log pθ(x0 |x1) =
d∑

i=1

log
∫ δ+(x0,i)

δ−(x0,i)
N (xi;µθ(x1, 1), σ

2
1)dxi

≈ −
d∑

i=1

2

255
· 1

2σ2
1

(x0,i−x1,i︸ ︷︷ ︸
:=−ε̃1,i

+εθ(x1, 1)i)
2 + C for some constant C

= −γ0

∣∣∣∣∣∣∣∣εθ(x1, 1)− ε̃1

∣∣∣∣∣∣∣∣2 + C for some constant γ0

(2.11)

Hence, in order to learn a “good” distribution pθ(x0), we have to maximize the variational lower bound in

Eq.2.4. By our calculations above, using εθ(·, ·), our training objective becomes:

max
θ

Eq(x1 | x0) [log pθ(x0 |x1)]−DKL(q(xT |x0)||p(xT ))−
T−1∑
t=1

Eq(xt+1 | x0) [DKL(q(xt |xt+1,x0)||pθ(xt |xt+1))]

⇐⇒ max
θ

Eq(x1 | x0)

[
−γ0

∣∣∣∣∣∣∣∣εθ(x1, 1)− ε̃1

∣∣∣∣∣∣∣∣2 + C

]
−

T−1∑
t=1

Eq(xt+1 | x0)

[
1− αt+1

2αt+1(1− ᾱt)

∣∣∣∣∣∣∣∣εθ(xt+1, t+ 1)− ε̃t+1

∣∣∣∣∣∣∣∣2
]

⇐⇒ min
θ

T∑
t=1

Eq(xt | x0)

[
γt

∣∣∣∣∣∣∣∣εθ(xt, t)− ε̃t

∣∣∣∣∣∣∣∣2
]

for some constants {γt}Tt=1

⇐⇒ min
θ

Lγ(θ)

(2.12)

2.2 Denoising Diffusion Implicit Models (DDIMs)

The authors of DDIM [5] observe that in Eq.2.12, what really matters when training a DDPM model is the

marginal distribution q(xt |x0) ∼ N (
√
ᾱt x0, (1− ᾱt)I), rather than the joint distribution q(x1, . . . ,xT |x0).
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Also, in the DDPM paradigm, we hypothesize that the forward process indexed by {αt}Tt=1 ⊆ (0, 1)T is

Markovian, otherwise we cannot calculate the posterior distribution using Bayes theorem (as for DDPM)

because q(xt |xt−1) does not equal to q(xt |xt−1,x0) in general.

The authors of DDIM used another vector {σt}Tt=1 ⊆ [0, 1)T to define a family Q of distributions that

satisfies:

qσ(x1, . . . ,xT |x0) = qσ(xT |x0)
T−1∏
t=1

qσ(xt |xt+1,x0) (2.13)

while ensuring qσ(xt |x0) ∼ N (
√
ᾱt x0, (1 − ᾱt)I) for t = 1, . . . , T , as in DDPM. With this factorization, we

would have the same variational lower bound as in Eq.2.4.

We have two goals now. The first goal is to find the posterior mean and covariance for qσ(xt |xt+1,x0) in

Eq.2.13 that gives the same q(xt |x0) as in DDPM. The second goal is to derive a suitable training objective

in the non-Markovian scheme starting from Eq.2.4.

In the DDIM paper [5], the authors proposed the following lemma:

Lemma 2.1 (Posterior forQ). Given {αt}Tt=1 and {σt}Tt=1, for all qσ ∈ Q, if

qσ(xT |x0) ∼ N (
√
ᾱT x0, (1− ᾱT )I)

and for all t = 1, . . . , T − 1,

qσ(xt |xt+1,x0) ∼ N

√
ᾱt x0+

√
1− ᾱt − σ2

t+1

1− ᾱt+1
(xt+1−

√
ᾱt+1 x0), σ2

t+1I


then for all t = 1, . . . , T , we have

qσ(xt |x0) ∼ N (
√
ᾱt x0, (1− ᾱt)I)

Proof. The proof is done by induction from t = T to t = 1. The base case is t = T , which is already given.

Suppose the statement holds for 2 ≤ t = k ≤ T . We want to show that the statement also holds for t = k−1.

DenoteX = xk |x0 and Y = xk−1 |x0. By the definition of qσ(xt |xt+1,x0), Y |X is Gaussian. Hence, we can

use the result in Appendix B as follows:

µX =
√
ᾱk x0, ΣX = (1− ᾱk)I, ΣY |X = σ2

kI,

A =

√
1− ᾱk−1 − σ2

k

1− ᾱk
I,

b =
√
ᾱk−1 x0−

√
1− ᾱk−1 − σ2

k

1− ᾱk

√
ᾱk x0

The marginal mean and covariance of Y are then given as:

µY = AµX + b

=
������������√

1− ᾱk−1 − σ2
k

1− ᾱk

√
ᾱk x0 +

√
ᾱk−1 x0−

������������√
1− ᾱk−1 − σ2

k

1− ᾱk

√
ᾱk x0

=
√
ᾱk−1 x0

ΣY = ΣY |X +AΣXAT

= ��σ
2
kI+

1− ᾱk−1 − ��σ
2
k

����1− ᾱk
�����(1− ᾱk)I

= (1− ᾱk−1)I
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Therefore, qσ(xk−1 |xk,x0) ∼ N (
√
ᾱk−1 x0, (1− ᾱk−1)I), and we finished the proof.

The introduction of σ into our notation gives us a wider class of models that we can consider than just

DDPMs, which features Markovian transitions. To make the transitions Markovian, we can just match the

posterior covariance in both cases, which leads to

σ2
t+1I =

(1− αt+1)(1− ᾱt)

1− ᾱt+1
I =⇒ σt+1 =

√
(1− αt+1)(1− ᾱt)

1− ᾱt+1
, t = 1, . . . , T − 1 (2.14)

For completeness, we can define an auxiliary parameter α0 = 1, so that σ1 = 0.

When σt ≡ 0 for all t, the covariance of the posteriors q(xt |xt+1,x0) becomes0. This makes the forward

process deterministic, in the sense that when we know both xt and x0, we can solve for xt+1 by solving the

condition in Lemma 2.1 (except for calculating or sampling x1):

xt =
√
ᾱt x0+

√
1− ᾱt

1− ᾱt+1
(xt+1−

√
ᾱt+1 x0)

In this case (where σt ≡ 0 for all t), themodel is calleddenoising diffusion implicitmodel (DDIM), and

it is trained with the DDPM objective (Eq.2.12). The forward process in this case is no longer a diffusion:

once x1 is sampled from qα(x1 |x0) ∼ N (
√
α1, (1− α1)I), x2, . . . ,xT are solved iteratively.

As in DDPM, we are trying to match pθ(xt |xt+1) and qσ(xt |xt+1,x0). The covariance of the posterior is

constant, so we only need to estimate the mean µθ(xt+1, t+ 1) for pθ(xt |xt+1), t = 1, . . . , T − 1.

The first step is same as that for DDPM: since q(xt+1 |x0) ∼ N (
√
ᾱt+1 x0, (1 − ᾱt+1)I), we can sample

ε̃t+1 ∼ N (0, I) and let xt+1
D
=

√
ᾱt+1 x0+

√
1− ᾱt+1ε̃t+1 =⇒ x0 = 1√

ᾱt+1
xt+1−

√
1−ᾱt+1

ᾱt+1
ε̃t+1.

Plugging it into the posterior mean, we have:

√
ᾱt x0+

√
1− ᾱt − σ2

t+1

1− ᾱt+1
(xt+1−

√
ᾱt+1 x0)

=

√
1− ᾱt − σ2

t+1

1− ᾱt+1
xt+1+

√
ᾱt −

√
ᾱt+1(1− ᾱt − σ2

t+1)

1− ᾱt+1

x0

=

√
1− ᾱt − σ2

t+1

1− ᾱt+1
xt+1+

√
ᾱt −

√
ᾱt+1(1− ᾱt − σ2

t+1)

1− ᾱt+1

( 1
√
ᾱt+1

xt+1−

√
1− ᾱt+1

ᾱt+1
ε̃t+1

)

=
1

√
αt+1

xt+1+

(√
1− ᾱt − σ2

t+1 −

√
1− ᾱt+1

αt+1

)
ε̃t+1

We can use a network εθ(xt+1, t + 1) to estimate ε̃t+1, and let the mean and covariance of pθ(xt |xt+1) be

µθ(xt+1, t+ 1) = 1√
αt+1

xt+1+
(√

1− ᾱt − σ2
t+1 −

√
1−ᾱt+1

αt+1

)
εθ(xt+1, t+ 1) and σ2

t+1I. Hence,

DKL(q(xt |xt+1,x0)||pθ(xt+1 ||xt)) =


√
1− ᾱt − σ2

t+1 −
√

1−ᾱt+1

αt+1

σt+1

2 ∣∣∣∣∣∣∣∣εθ(xt+1, t+ 1)− ε̃t+1

∣∣∣∣∣∣∣∣2
Combining this with Eq.2.11, we can rewrite the training objective (Eq.2.4) as maximizing

Eq(x1 | x0)

[
−γ0

∣∣∣∣∣∣∣∣εθ(x1, 1)− ε̃1

∣∣∣∣∣∣∣∣2
]
−

T−1∑
t=1

Eq(xt+1 | x0)



√

1− ᾱt − σ2
t+1 −

√
1−ᾱt+1

αt+1

σt+1

2 ∣∣∣∣∣∣∣∣εθ(xt+1, t+ 1)− ε̃t+1

∣∣∣∣∣∣∣∣2
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which is equivalent to minimizing

T∑
t=1

Eq(xt | x0)

[
γt(σ)

∣∣∣∣∣∣∣∣εθ(xt, t)− ε̃t

∣∣∣∣∣∣∣∣2
]
:= Jσ(θ) (2.15)

Note that Eq.2.15 has the same form as Eq.2.12 up to a constant (with respect to θ), so we can train DDIM

models using the same objective as DDPMmodels 2.

Hence, our two goals are both achieved. Our next focus is on the generation process of DDIM. In the

DDPM paper [2], the authors claimed to use γ = 1: L1(θ) can be used as a surrogate objective for Jσ(θ)[5].

Hence, when our posterior is defined to maintain the same q(xt |x0), we are able to consider forward pro-

cesses shorter than T , i.e., we can choose a subset of times {1, . . . , T}, τ = {τ1, . . . , τS} ⊆ {1, . . . , T}, for
some 1 ≤ S < T . In this manner, the sampling process becomes much more efficient than the original

procedure, because in the original DDPM, both the forward process and the reverse process would take the

full T steps.

For numerical experiments, the authors considered different subsequences τ and defined {στi}Si=1 as:

στi = η

√
(1− ατi)(1− ᾱτi−1)

1− ᾱτi

with some η ∈ [0, 1]. According to condition 2.14, we get a DDIM model when η = 0; a DDPMmodel when

η = 1; and a model with some stochasticity for values of η in between. The authors of DDIM [5] varied

S, the length of the subsequence, and η, the parameter controlling stochasticity, generate samples from a

trained DDIM model (trained with the DDPM objective), and then evaluated the model’s quality based on

Frechet Inception Distance (FID), along with a discussion on sample efficiency and consistency.
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A KL Divergence between Gaussians

Let p and q be the probability density ofN (µ1,Σ1) andN (µ2,Σ2), respectively. Then, ∀x ∈ Rd,

p(x) =
1

(2π)
d
2

√
det(Σ1)

exp
{
−1

2
(x− µ1)

TΣ−1
1 (x− µ1)

}
q(x) =

1

(2π)
d
2

√
det(Σ2)

exp
{
−1

2
(x− µ2)

TΣ−1
2 (x− µ2)

}
The KL divergence becomes 3:

DKL(p||q) =
∫

p(x) log
p(x)

q(x)
dx

=

∫
p(x)

(
−1

2
(x− µ1)

TΣ−1
1 (x− µ1) +

1

2
(x− µ2)

TΣ−1
2 (x− µ2) + log

√
det(Σ2)

det(Σ1)

)
dx

=
1

2
log

det(Σ2)

det(Σ1)
− 1

2
EX∼p

[
Tr
(
(X − µ1)

TΣ−1
1 (X − µ1)

)]
+

1

2
EX∼p

[
Tr
(
(X − µ2)

TΣ−1
2 (X − µ2)

)]
For the second term:

− 1

2
EX∼p

[
Tr
(
(X − µ1)

TΣ−1
1 (X − µ1)

)]
=− 1

2
EX∼p

[
Tr
(
Σ−1
1 (X − µ1)(X − µ1)

T
)]

=− 1

2
Tr
(
Σ−1
1 EX∼p

[
(X − µ1)(X − µ1)

T
])

=− 1

2
Tr(Σ−1

1 Σ1) = −d

2

For the third term:

1

2
EX∼p

[
Tr
(
(X − µ2)

TΣ−1
2 (X − µ2)

)]
=
1

2
EX∼p

[
Tr
(
Σ−1
2 (X − µ2)(X − µ2)

T
)]

=
1

2
EX∼p

[
Tr
(
Σ−1
2 ((X − µ1) + (µ1 − µ2))((X − µ1) + (µ1 − µ2))

T
)]

=
1

2

{
Tr
(
Σ−1
2 (EX∼p

[
(X − µ1)(X − µ1)

T + (X − µ1)(µ1 − µ2)
T + (µ1 − µ2)(X − µ1)

T + (µ1 − µ2)(µ1 − µ2)
T
]
)
)}

=
1

2

Tr

Σ−1
2

Σ1 + EX∼p[X − µ1]︸ ︷︷ ︸
=0

(µ1 − µ2)
T + (µ1 − µ2)EX∼p[(X − µ1)

T ]︸ ︷︷ ︸
=0

+(µ1 − µ2)(µ1 − µ2)
T


=
1

2

{
Tr(Σ−1

2 Σ1) + Tr
(
Σ−1
2 (µ1 − µ2)(µ1 − µ2)

T
)}

=
1

2

Tr(Σ−1
2 Σ1) + Tr

(µ1 − µ2)
TΣ−1

2 (µ1 − µ2)︸ ︷︷ ︸
∈R




=
1

2
Tr(Σ−1

2 Σ1) +
1

2
(µ1 − µ2)

TΣ−1
2 (µ1 − µ2)

Putting all terms together,

DKL(p||q) =
1

2

(
log

det(Σ2)

det(Σ1)
− d+ Tr(Σ−1

2 Σ1) + (µ1 − µ2)
TΣ−1

2 (µ1 − µ2)

)
3the calculation below relies on the cyclic property of trace.
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B Marginal Distribution of Multivariate Gaussian

LetX ∼ N (µX ,ΣX) ∈ Rd1 and Y |X = x ∼ N (Ax+ b,ΣY |X) ∈ Rd2 . We want to find the marginal of Y 4.

TheoremB.1. LetX =

[
X1

X2

]
∼ N

([
µ1

µ2

]
,

[
Σ11 Σ12

Σ21 Σ22

])
, whereX1 ∈ Rd1 , X2 ∈ Rd2 . Then givenX2 = x2,

the conditional distribution of X1 is (X1|X2) ∼ N (µ1|2,Σ11|2), where µ1|2 = µ1 + Σ12Σ
−1
22 (x2 − µ2),Σ11|2 =

Σ11 − Σ12Σ
−1
22 Σ21.

Proof. First, perform a nonsingular linear transformation:

Z =

[
Z1

Z2

]
= BX =

[
Id1 −Σ12Σ

−1
22

O Id2

][
X1

X2

]
=

[
X1 − Σ12Σ

−1
22 X2

X2

]

Hence, the mean and covariance matrix of Z are

µZ = BX =

[
µ1 − Σ12Σ

−1
22 µ2

µ2

]

ΣZ = BΣBT =

[
Id1 −Σ12Σ

−1
22

O Id2

][
Σ11 Σ12

Σ21 Σ22

][
Id1 O

−Σ−1
22 Σ21 Id2

]
=


Σ11 − Σ12Σ

−1
22 Σ21︸ ︷︷ ︸

:=Σ11|2

O

O Σ22


Hence, Z ∼ N (µZ ,ΣZ). Also, Z1 and Z2 are independent because ΣZ is diagonal. Then, we can write the

joint densities ofX and Z below 5:

g(z1, z2) = g1(z1)g2(z2) = g1(x1 − Σ12Σ
−1
22 x2)f2(x2),

f(x1, x2) = g(z1, z2) |det(Jz)| Jz = B is the Jacobian matrix

= g1(x1 − Σ12Σ
−1
22 x2)f2(x2) · 1

By definition of conditional distribution, the density ofX1|X2 = x2 is:

f1(x1|x2) =
f(x1, x2)

f2(x2)
= g1(x1 − Σ12Σ

−1
22 x2)

=
1

(2π)
d1
2

√
det(Σ11|2)

exp{−1

2
(x1 − Σ12Σ

−1
22 x2 − (µ1 − Σ12Σ

−1
22 µ2))

TΣ−1
11|2

(x1 − Σ12Σ
−1
22 x2 − (µ1 − Σ12Σ

−1
22 µ2)︸ ︷︷ ︸

=x1−(µ1+Σ12Σ
−1
22 (x2−µ2)):=µ1|2

}

=
1

(2π)
d1
2

√
det(Σ11|2)

exp
{
−1

2
(x1 − µ1|2)

TΣ−1
11|2(x1 − µ1|2)

}
∼ N (µ1|2,Σ11|2)

Denote Z =

[
Y

X

]
=

[
AX + b

X

]
∼ N

([
µ1

µ2

]
,

[
Σ11 Σ12

Σ21 Σ22

])
. We know that µ2 = µX ,Σ22 = ΣX , and also

Σ12 = Cov(X,AX + b) = ACov(X,X) = AΣX ,Σ21 = ΣT
12 = ΣXAT .

4The following theorem is from this textbook [1], Theorem 2.3.2, pp.31-32
5The determinant of upper/lower-triangular matrix is product of the main diagonal, so det(B) = 1.
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Then we have, ∀x ∈ Rd1 , Ax+ b = µ1|2 = µ1 +Σ12Σ
−1
22 (x− µ2)

ΣY |X = Σ22|1 = Σ11 − Σ12Σ
−1
22 Σ21

To find the marginal distribution of Y , we only need to solve for µ1 and Σ11:

Ax+ b = Σ12Σ
−1
22 (x− µ2) = µ1 +AΣXΣ−1

X (x− µ2) =⇒ µ1 = AµX + b

ΣY |X = Σ11 −AΣXΣ−1
X ΣXAT =⇒ Σ11 = ΣY |X +AΣXAT

Therefore, the marginal distribution of Y is Y ∼ N (AµX + b,ΣY |X +AΣXAT ).
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